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Null model tests of presence–absence data (‘NMTPAs’) provide important tools for inferring eff ects of competition, facili-
tation, habitat fi ltering, and other ecological processes from observational data. Many NMTPAs have been developed, but 
they often yield confl icting conclusions when applied to the same data. Type I and II error rates, size, power, robustness 
and bias provide important criteria for assessing which tests are valid, but these criteria need to be evaluated contingent 
on the sample size, null hypothesis of interest, and assumptions that are appropriate for the data set that is being analyzed. 
In this paper, we confi rm that this is the case using the software MPower, evaluating the validity of NMTPAs contingent 
on the null hypothesis being tested, assumptions that can be made, and sample size. Evaluating the validity of NMTPAs 
contingent on these factors is important towards ensuring that reliable inferences are drawn from observational data about 
the processes controlling community assembly.
Many fundamental questions about the processes that 
shape communities cannot be addressed experimentally 
because experimentation is impractical, unethical, or impos-
sible at the relevant large spatial and temporal scales. Instead, 
to address these questions, inferences must be made from 
observational data (Connor and Simberloff  1986). Null 
model tests of presence–absence data (‘NMTPAs’) are a key 
tool for making these inferences, allowing community-wide 
eff ects of habitat fi ltering, competition, and facilitation to be 
inferred from observations of species distribution patterns 
(Connor and Simberloff  1979). In testimony to their impor-
tance, NMTPAs have been used in over 100 recent published 
studies (Google Scholar search performed on 20 April 2007; 
Sanders et al. 2003, Gotelli and McCabe 2002, Gotelli and 
Rhode 2002). Moreover, because an understanding of pro-
cesses is needed for many conservation-related management 
decisions, for example, preserving intact assemblages where 
ecosystem function plays a critical role as the process, NMT-
PAs can play a role in the development of conservation strat-
egies (Beissinger et al. 1996). In the future, NMTPAs will 
continue to be important because of the increasing need to 
make both basic and policy-related inferences from observa-
tional data.

In general, null models are constructed to exclude the 
process of interest (e.g. competition). If the data are found 
to be inconsistent with the model, then the process is 
concluded to possibly have aff ected community assembly 
(Connor and Simberloff  1979). Th e data used in NMTPAs 
are lists of species present at sites, which are relatively easy 
to collect and widely available in the literature. Th e data are 
usually summarized in a presence–absence matrix, in which 
rows represent species and columns represent sites. In the 
matrix, 1 is entered where species are present and 0 where 
they are absent (Gotelli and Graves 1996).

Th e application of NMTPAs has two substantial advan-
tages, but also has a serious shortcoming. NMTPAs are often 
used instead of process-based models because they give pri-
macy to the parsimonious hypothesis – that the process of 
interest is not occurring – and because they can allow the 
rate of falsely concluding that a process is occurring to be 
controlled, as in statistical hypothesis testing (Connor and 
Simberloff  1983, 1986). However, over 40 NMTPAs have 
been proposed (Gotelli 2000, Fox 1987), and they often 
give confl icting conclusions when applied to the same data. 
Clearly, not all of the conclusions can be correct. Hence, it 
can be unclear which, if any, NMTPAs should be used.

Given the importance of NMTPAs, their validity should 
be assessed using appropriate and rigorous criteria. Such 
criteria are provided by Neyman-Pearson hypothesis testing 
theory, which is the justifi cation for most common frequen-
tist statistical tests such as ANOVAs and non-parametric 
methods (Casella and Berger 2002, Lehmann and Romano 
2005). Th e criteria provided by Neyman-Pearson theory 
include size, which is the maximum rate at which the null 
hypothesis is rejected when it is true; power, which is the 
rate at which the null hypothesis is rejected when it is false; 



robustness, which is a measure of the dependence of a test’s 
error rates on assumptions; and bias, which is a measure of 
how much more likely the null hypothesis is to be rejected 
when it is false than when it is true. Th ese criteria have been 
used to evaluate many NMTPAs (Wilson 1987, Gotelli 
2000, Ladau 2008), and recent applications of NMTPAs 
have been justifi ed based on closely-related type I and II 
error rates (rates of incorrect rejection and acceptance of 
the null hypothesis, respectively) (Gotelli and Rohde 2002, 
Feeley 2003, Chaves and Anez 2004, Heino and Soininen 
2005, Mouillot et al. 2005, Ribichich 2005). If an NMTPA 
meets these criteria, then it will likely lead to correct ecologi-
cal conclusions, whereas if it does not, then the conclusions 
will likely be incorrect.

Th e size, power, robustness, and bias of NMTPAs depend 
on the data that are being analyzed. For instance, although a 
particular test may have low error rates when applied to one 
data set, that test may have error rates as high as 100% when 
applied to another. In particular, the validity of NMTPAs 
depends heavily on the sample size, null hypothesis being 
tested, and assumptions that can be made about the data 
(Ladau 2008). It appears diffi  cult to simply generate general 
rules for the applicability of NMTPAs, so it is necessary to 
evaluate the validity of NMTPAs on a case-by-case basis.

In this paper, we confi rm the results of Ladau (2008) – 
that the validity of NMTPAs needs to be checked on a case-
by-case basis. We consider six published data sets (Connor 
and Simberloff  1979, Reed 1980, Haefner 1988, Gotelli and 
Ellison 2002, Feeley 2003), and show that the validity of 
NMTPAs depends on the sample size, null hypothesis, and 
assumptions. Moreover, we confi rm that in general, strong 
assumptions are required in order to reach reliable conclu-
sions using NMTPAs in these cases. To facilitate evaluating 
NMTPAs on a case-by-case basis, we employ MPower, a 
user-friendly software package detailed in the Appendix 1, 
for evaluating the size, power, robustness and bias of 
NMTPAs contingent on the sample size, null hypothesis, 
and assumptions that are selected by the user.

Methods

Formulating null hypotheses

Th e validity of any hypothesis test depends on the null 
and alternative hypotheses that it is being used to test. Th e 
hypotheses determine what constitutes an error, and hence 
what it means for a test to be reliable and valid. In previ-
ous work, several null and alternative hypotheses have been 
considered for NMPTAs (Gotelli and McCabe 2002, Ladau 
2008). Th ree canonical null and alternative hypotheses are:

1. Species interactions. Th e null hypothesis (H
01

) posits 
that at a given site, species occur independently. For 
instance, if two species can occur on an island, then 
the probability of species A occurring there is the 
same regardless of whether species B is already there. 
Such a situation is inconsistent with eff ects of species 
interactions. Th e alternative hypothesis is consistent 
with interactions between species, and posits that at 
a given site, species occur dependently. For instance, 
if competition aff ects the co-occurrence pattern, then 
species A might be less likely to occur if species B is 
present.

2. Heterogeneity of sites. Th e null hypothesis (H
02

) pos-
its that each species is equally likely to occur at all 
sites. Such a situation might arise if sites are uniform 
and equally accessible. Th e corresponding alternative 
hypothesis posits that species have diff erent probabil-
ities of occurring at diff erent sites. Such a situation 
can arise if sites diff er in microclimates, or if some 
sites are more accessible than others.

3. Heterogeneity of species. Th e null hypothesis (H
03

) pos-
its that at a given site, all species are equally likely to 
occur. Such a situation could arise if all species have 
similar dispersal abilities and niche requirements, so 
that if a site is accessible and hospitable to one spe-
cies, then it is accessible and hospitable to all species. 
Th is null hypothesis diff ers from the previous null 
hypothesis in that sites may diff er. Th e correspond-
ing alternative hypothesis posits that species may 
have diff erent probabilities of occurring at each site. 
For instance, because a site might be in an arid loca-
tion, Species A might be more likely to occur than 
species B.

Assumptions

Th e validity of any hypothesis test also depends on which 
assumptions are reasonable. For example, if assumptions 
of normality, independence, and equality of variance are 
met, then a Student’s t-test is an appropriate and optimal 
test of whether two means diff er. When the assumptions 
are invalid but others are met, diff erent, non-parametric 
tests are appropriate (Zar 1999). Likewise, the reliability of 
NMTPAs depends on which assumptions are appropriate 
(Ladau 2008).

Th ree assumptions are particularly germane to NMTPAs. 
First, if the null hypothesis is H

02
 or H

03
, then the presence 

of each species can be assumed to not aff ect the probability 
of other species occurring, a scenario consistent with a lack of 
eff ects of interactions. Second, if the null hypothesis is H

01
 or 

H
03

, then species can be assumed to be equally likely to occur 
at all sites (diff erent species may have diff erent probabilities 
of occurring, though). Such a situation might arise if sites 
are uniform and equally accessible. Th is assumption will 
hereafter be referred to as site equivalency. Last, if the null 
hypothesis is H

01
 or H

02
, then all species can be assumed 

equally likely to occur at each site, an assumption here-
after referred to as species equivalency. However, under 
this assumption, species may have diff erent probabilities 
of occurring at diff erent sites. Species equivalency will be 
reasonable if all species have similar dispersal abilities and 
niche requirements, so that if a site is accessible and hospi-
table to one species, then it is accessible and hospitable to 
all species.

Needless to say, for many data sets, these assumptions 
are unrealistic – species interact, the sites are heterogenous, 
and species diff er in their dispersal abilities. So why con-
sider these assumptions? If no assumptions are made, then 
it is very likely that all NMTPAs will be unreliable. Th at 
said, some tests - particularly the ones that fi x row or column 
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totals – may require fewer assumptions than other tests 
(Ladau 2008).

Presence–absence matrices

Th e appropriateness of any hypothesis test can depend on 
attributes of the sample that is being analyzed. For instance, 
most ANOVAs require a minimal sample size, below 
which the test will be incapable of giving signifi cant results (Zar 
1999). Likewise, the appropriateness and reliability of NMT-
PAs can depend on attributes of the presence–absence matrix; 
particularly its dimensions (Ladau 2008). In general, NMTPAs 
may have low power when applied to small matrices (fewer than 
seven rows and columns). However, the appropriateness and 
reliability of NMTPAs can vary unpredictably with matrix size, 
and should be assessed on a case-by-case basis.

Analysis of published data sets

To confi rm that the validity of NMTPAs varies on a case-
by-case basis, we selected six published presence–absence 
matrices (Connor and Simberloff  1979, Reed 1980, Haefner 
1988, Gotelli and Ellison 2002, Feeley 2003) that spanned 
a range of taxa and geographic locations had widely vary-
ing dimensions (Table 1, fi rst column). We used MPower 
(Appendix 1) to evaluate the validity of four commonly used 
NMTPAs for analyzing each matrix (Gotelli 2000, Gotelli 
and McCabe 2002, Gotelli and Ellison 2002, Feeley 2003). 
Th e NMTPAs all employed the C-score statistic (Stone and 
Roberts 1990), and randomization algorithms that fi xed the 
total number of species occurrences, the presence–absence 
matrix row totals, column totals, or both the row and col-
umn totals (Appendix 1; Gotelli 2000). Th ese NMTPAs will 
hereafter be referred to as δ

EE
, δ

FE
, δ

EF
 and δ

FF
, respectively. 

We considered the null hypothesis H
01

 (interspecifi c inter-
actions), and we evaluated the validity of each test under 
four assumptions: both species and sites equivalent, just 
species equivalent, just sites equivalent, and no assumptions 
(Ladau 2008).

Results and discussion

Th e validity of the tests δ
EE

, δ
FE

, δ
EF

 and δ
FF

 depended on 
the presence-absence matrix that was being analyzed and the 
assumptions. If species and/or sites were assumed equivalent, 
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Presence–absence matrix Sites and species equivalent

Greater Antillean lizards (6 � 9) —
United Kingdom birds (8 � 26) δEE, δFE [δFF]
New England ants (24 � 22) δEE, δFE

Venezuelan birds (43 � 25) δFE [δEE]
New Hebrides birds (56 � 28) δFE [δEE]
West Indian bats (59 � 25) δFE [δEE]
then in almost all instances, at least one test was robust and 
powerful and in many cases tests existed that were also unbi-
ased (Table 1). However, if no assumptions were made, then 
all tests were either non-robust or not powerful (Table 1). 
Robust tests had type I error rates close to 5%, while non-
robust tests frequently had type I error rates approaching 100%. 
Powerful tests generally correctly rejected the null hypothesis 
at rates exceeding 30%, while tests lacking power always cor-
rectly rejected the null hypothesis at rates below 15%. Overall, 
for all six data sets, the NMTPAs required assumptions of site 
or species equivalency to have controlled type I error rates 
and adequate power. Th e latter properties are crucial for 
NMTPAs because otherwise, they will frequently indicate 
eff ects of interspecifi c interactions (non-independent distri-
butions) when they are absent, or not indicate eff ects when 
they are present, respectively (Gotelli 2000, Ladau 2008).

Are assumptions of site or species equivalency appropri-
ate for the published data sets? Site equivalency means that 
unconditional on the occurrence of other species, each spe-
cies is equally likely to occur at all sites. Th e data sets tend 
to cover broad geographic areas, such as the islands of Lake 
Guri, a reservoir with an area of 4300 km2 (Feeley 2003), 
contain sites with diff ering habitats, and with one exception 
(Gotelli and Ellison 2002), contain sites with diff ering areas. 
Th us, while we are not familiar with all of the details of these 
systems, it appears that species are likely to diff er in their 
probabilities of occurring at diff erent sites. In the original 
studies, the authors and investigators may have had this in 
mind, but it was not explicitly included in the test assump-
tions. As a case in point, Gotelli and Ellison (2002) compared 
sites between types (forest, bog) for ant species assemblages. 
Th us, within each site type, there was the opportunity to 
include assumptions of site equivalency.

Species equivalency means that unconditional on the 
occurrence of other species, all species have the same prob-
ability of occurring at each site. Gotelli and Ellison (2002) 
used the similarity in habitat use by ant species as a premise 
for expecting to fi nd competition; in this way, an assumption 
of species equivalence may have been appropriate for their 
data. However, for most assemblages, it is somewhat coun-
ter-intuitive to assume species equivalence because species 
tend to diff er in their dispersal abilities and habitat require-
ments, even at restricted taxonomic scales.

Without detailed information about the sites and specifi c 
information about habitat affi  nities, dispersal abilities, and 
distributions of the species, it is diffi  cult to assess whether 
Table 1. Valid tests. Tests listed without brackets are robust, unbiased and powerful. Those in brackets are robust and powerful, but biased. 
Tests that are non-robust or not powerful are not listed. See the text for a complete list of the tests considered.
Assumptions

Sites equivalent Species equivalent None

δFE [δFE] —
δFE [δEE, δEF, δFF] δFF [δEE, δFE] —

δFE [δEE] [δEE, δFE] —
δFE [δEE] [δEE, δFE] —
δFE [δEE] [δEE, δFE] —
δFE [δEE] [δEE, δFE] —



site or species equivalency can be assumed. Although the 
NMTPAs examined here require such detailed information 
to be validated, analyses using diff erent null hypotheses (e.g. 
H

02
 or H

03
) may require less information (Ladau 2008). 

Moreover, an NMTPA has recently been developed that can 
be proven robust and uniformly most powerful under gener-
ally reasonable assumptions, and this can provide a useful 
alternative in situations in which assumptions cannot be jus-
tifi ed (Ladau and Schwager 2008).

Th e present results, coupled with previous fi ndings, dem-
onstrate the need for assessing the validity of NMTPAs on 
a case-by-case basis. Generally, in the context of null model 
testing, size, power, robustness, and bias are closely related 
to type I and II error rates. Since NMTPAs were introduced 
in community ecology, type I and II error rates have fi gured 
prominently. Indeed, one of the original motivations for 
introducing null model tests into community ecology was 
to control the rate of inferring eff ects of competition when 
they are absent (Connor and Simberloff  1979, 1986). Th e 
current widespread usage of NMTPAs has resulted largely 
from Gotelli (2000), an evaluation of the type I and II 
error rates of 36 NMTPAs. Nonetheless, examinations 
of type I and II error rates have often yielded confl icting 
conclusions. Th ese confl icts often stem from the fact that 
the error rates depend strongly on what null hypothesis is 
being tested, what assumptions are made, and the dimen-
sions of the presence–absence matrix being analyzed (Ladau 
2008). Th e present results corroborate these fi ndings. For 
instance, δ

EE
 was robust, powerful, and unbiased only for the 

United Kingdom birds and New England ants matrices when 
all sites and species were assumed equivalent, and δ

FF
 only 

had these properties for the United Kingdom birds matrix 
when species were assumed equivalent. Th ese fi ndings 
strongly support the argument for evaluating the applica-
bility of NMTPAs contingent on the data being analyzed, 
with explicit consideration of assumptions. We provide the 
user-friendly software, MPower (Appendix 1) to conduct 
these evaluations.

Although there is a great deal of inconsistency in the 
appropriateness of tests, some generalizations can be made.  
If the null hypothesis is independent assembly of species (no 
eff ects of interspecifi c interactions) and if sites or species can 
be assumed equivalent, then δ

EF
 and δ

FE
 can be proven robust, 

respectively (Ladau 2008). Moreover, for all of the matrices 
examined here, δ

FE
 was robust, unbiased, and powerful when 

sites were assumed equivalent. We hasten to add, however, 
that we are unaware of any analytical proof of why δ

FE
 should 

have power under this assumption, and although this pattern 
is suggestive, it is by no means a justifi cation for applying δ

FE
 

to other matrices. Rather, it suggests that δ
FE

 should be one of 
the fi rst tests evaluated prior to an analysis. For diff erent null 
hypotheses, diff erent generalizations may apply.

In conclusion, NMTPAs occupy a central position in 
ecology: they allow theories about the ecological mechanisms 
of community assembly to be tested with non-experimental 
data. Th is capability is important for understanding com-
munity assembly when experimentation is impossible, for 
instance at large spatial and temporal scales. However, the 
inferences from NMTPAs depend directly on their statisti-
cal properties: tests that are non-robust, biased, or without 
power can provide highly misleading conclusions, which 
are less often correct than incorrect. As we confi rm here, 
these properties need to be assessed on a case-by case basis, 
depending on the sample size, null hypothesis of interest, and 
assumptions that are appropriate for the data set that is being 
analyzed. MPower allows ecologists to assess these proper-
ties, ensuring that the NMTPAs that they use are reliable. 
In addition, clearly mapping out, a priori, what mechanisms 
are thought to be acting, and which assumptions could be 
considered can give the investigator more power. MPower 
quite literally empowers the user in these regards.

Acknowledgements – Th is work was supported by a Santa Fe Insti-
tute Postdoctoral Fellowship and Gordon and Betty Moore Foun-
dation Grant (to JL), and an NSF Biological Informatics Fellowship 
(to SJR). Th is work was conducted while SJR was a Postdoctoral 
Associate at the National Center for Ecological Analysis and Syn-
thesis, a Center funded by NSF (Grant EF-0553768), the Univ. of 
California, Santa Barbara, and the State of California. We thank 
Jennifer Dunne, Jon Wilkins, Lauren Buckley and Steven Schwager 
for suggesting useful improvements to MPower.

References

Beissinger, S. R. et al. 1996. Null models for assessing ecosys-
tem conservation priorities: threatened birds as titers of thre-
atened ecosystems in South America. – Conserv. Biol. 10: 
1343–1352.

Casella, G. and Berger, R. L. 2002. Statistical inference (2nd ed.). – 
Duxbury Press, Pacifi c Grove.

Chaves, L. F. and Anez, N. 2004. Species co-occurrence and fee-
ding behavior in sand fl y transmission of American cutaneous 
leishmaniasis in western Venezuela. – Acta Trop. 92: 219–224.

Connor, E. F. and Simberloff , D. 1979. Th e assembly of 
species communities: chance or competition? – Ecology 60: 
1132–1140.

Connor, E. F. and Simberloff , D. 1983. Interspecifi c competition 
and species co-occurrence patterns on islands: null models and 
the evaluation of evidence. – Oikos 41: 455–465.

Connor, E. F. and Simberloff , D. 1986. Competition, scien-
tifi c method, and null models in ecology. – Am. Sci. 74: 
155–162.

Feeley, K. 2003. Analysis of avian communities in Lake Guri, 
Venezuela, using multiple assembly rule models. – Oecologia 
137: 104–113.

Fox, B. J. 1987. Species assembly and the evolution of community 
structure. – Evol. Ecol. 1: 210–213.

Gotelli, N. J. 2000. Null model analysis of species co-occurrence 
patterns. – Ecology 81: 2606–2621.

Gotelli, N. J. and Graves, G. R. 1996. Null models in ecology. – 
Smithsonian Inst.

Gotelli, N. J. and Ellison, A. M. 2002. Assembly rules for New 
England ant assemblages. – Oikos 99: 591–599.

Gotelli, N. J. and McCabe, D. J. 2002. Species co-occurrence: 
a meta-analysis of J. M. Diamond’s assembly rules model. – 
Ecology 83: 2091–2096.

Gotelli, N. J. and Rohde, K. 2002. Co-occurrence of ectoparasites 
of marine fi shes: a null model analysis. – Ecol. Lett. 5: 86–94.

Gotelli, N. J. and Entsminger, G. L. 2006. EcoSim: null models 
software for ecology. Ver. 7. – Acquired Intelligence Inc. and 
Kesey-Bear. Jericho, VT 05465. <http://garyentsminger.com/
ecosim.htm>

Haefner, J. W. 1988. Assembly rules for greater Antillean Anolis 
lizards: competition and random models compared. – Oecologia 
74: 551–565.
1067



Heino, J. and Soininen, J. 2005. Assembly rules and community 
models for unicellular organisms: patterns in diatoms of boreal 
streams. – Freshwater Biol. 50: 567–577.

Ladau, J. 2008. Validation of null model tests using Neyman-
Pearson hypothesis testing theory. – Th eor. Ecol. 1: 241–248.

Ladau, J. and Schwager, S. 2008. Robust hypothesis tests for 
independence in community assembly. – J. Math. Biol. 57: 
537–555.

Lehmann, E. L. and Romano, J. P. 2005. Testing statistical hypot-
heses (3rd ed.). – Springer.

Mouillot, D. et al. 2005. Richness, structure and functioning in 
metazoan parasite communities. – Oikos 109: 447–460.

Appendix 1

MPower software package

Purpose of MPower
MPower is a user-friendly software package for evaluating 
the size, power, robustness and bias of NMTPAs contingent 
on the sample size, null hypothesis, and assumptions that are 
input by the user.

Null model tests
All NMTPAs are statistical hypothesis tests. For every pos-
sible set of observed data, they are rules that prescribe an 
action of either rejecting or not rejecting the null hypoth-
esis (Lehmann and Romano 2005). Many NMTPAs are 
implemented in EcoSim (Gotelli and Entsminger 2006), 
a widely used ecological modeling computer program. In 
EcoSim, an NMTPA is selected by choosing a row and 
column constraint, co-occurrence index, iterations option, 
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randomization algorithm, and degenerate matrix option. 
MPower operates in conjunction with EcoSim (Program 
architecture, below), and can evaluate all of the tests imple-
mented in the Co-occurrence module of EcoSim (Fig. 1).

User inputs
MPower allows the null hypotheses and assumptions dis-
cussed in the text to be specifi ed. In addition, MPower 
allows input of the dimensions of the presence–absence 
matrix (Fig. 1).

Program distribution and architecture
A free, compiled version of MPower is available at <www.
santafe.edu/~jladau/MPower>. Source code is available upon 
request from the authors.

To make calculations, MPower begins by simulating data 
sets contingent on the null hypothesis, assumptions, and data 
attributes that are selected by the user. For example, if the 
Figure 1. MPower user interface. Contingent on the selected null hypothesis, assumptions, and presence–absence matrix dimensions, 
MPower assesses the validity of the selected NMTPA (hypothesis test).



null hypothesis of no interactions was selected, sites and spe-
cies were assumed equivalent, and the size of the matrix was 
10 � 10, MPower would begin by simulating 10 � 10 matri-
ces from nine probability distributions. Because both sites and 
species were assumed equivalent, in each distribution all occur-
rence probabilities would be equal; the probability that species i 
occurs at site j would equal the probability that species k occurs 
at site l. (Had other assumptions been selected, distributions 
having varying probabilities would be used, in addition to 
these distributions). Moreover, some of the distributions would 
be elements of the null hypothesis, while others would be ele-
ments of the alternative hypothesis. In the example, this means 
that in some distributions species would occur independently, 
while in others they would occur non-independently.

MPower next sends each simulated matrix to EcoSim 
(Gotelli and Entsminger 2006). MPower directs EcoSim 
to perform the NMTPA that the user has selected, and it 
records the result that EcoSim yields – i.e. to reject, or fail 
to reject the null hypothesis. For each distribution, MPower 
records the rate with which the null hypothesis is rejected. 
If a distribution is an element of the null hypothesis, the 
rate is an estimate of a type I error rate (false positive rate), 
while if it is an element of the alternative hypothesis, the rate 
is an estimate of power (true positive rate). Th ese estimates 
are used to calculate the size, power, robustness, and bias of 
the NMTPA. In particular, the size is calculated as the maxi-
mum observed type I error rate. With regard to power, the 
maximum and minimum probabilities of rejecting the null 
hypothesis over the alternative hypothesis are calculated. A 
test is concluded non-robust if its size exceeds 0.15 (three 
times the nominal size of 0.05), and biased if its minimum 
power is below half its size. Additional algorithmic and 
mathematical details are available in the MPower online help 
fi le and in Ladau (2008).
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